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ABSTRACT

Synchronous techniques have dominated digital 1logic
system design for decades because they are well understood
and less complicated to implement. With the advent of more
exotic high-speed transistors, the issues of clock skew,
system performance, power consumption, and technology
migration become critical to synchronous system designers.
Asynchronous digital design techniques utilize a local
completion signal or request/acknowledge handshake to lend
the stability afforded by the global clock in synchronous
systems. This research evaluates a moderately complex
digital system, an 8x8-bit multiplier utilizing high-speed
Indium Phosphide heterostructure bipolar junction
transistors, to determine whether asynchronous logic design
can compete with synchronous design in terms of system speed
and power consumption. Theoretical timing equations are
developed that relate the relative merits of each technique
for input-to-output latency and system throughput. Tanner
SPICE simulation tools are used to evaluate the full 8x8-bit
asynchronous array multiplier. Finally, direct comparisons
are made between five separate pipelined configurations of
the multiplier utilizing both synchronous and asynchronous
timing methodologies. As integrated circuits become smaller,
faster, and more complex, asynchronous schemes will continue
to mature and become more prevalent in digital system

design.
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EXECUTIVE SUMMARY

Synchronous logic design techniqgues have dominated the
arena of digital design for over thirty years. As the
negative impacts of clock skew, worst-case system
performance, power consumption, system modularity, and
technology migration push efficient synchronous design to
the limits, system engineers have looked to other techniques
for digital implementation. Asynchronous 1logic design
concepts have been studied for decades and are now beginning
to show promise for Dboth commercial and military

applications.

A moderately complex digital system, in this case an
8x8-bit pipelined multiplier, was designed wusing the
asynchronous micropipeline technique with a four-cycle
request/acknowledge handshake. High-speed Indium Phosphide
heterostructure bipolar junction transistors form the basis
for the digital logic gates in the design. In theory,
latency performance for asynchronous systems compares
favorably to synchronous implementation; however, the
overhead involved in the four-cycle handshake 1limits
throughput performance. Theoretically, asynchronous logic
displays improved overall power consumption performance

compared to synchronous logic.

For his Naval Postgraduate School Electrical
Engineering Masters Thesis, Major John Calvertl!, United
States Marine Corps, has designed and tested a similar
pipelined multiplier using optimum synchronous techniques.
Tanner SPICE simulations of the asynchronous and synchronous

models follow the theoretical trends described. Latency

lcalvert, J.R., Design of a Synchronous Pipelined Multiplier and
Analysis of Clock Skew in High-Speed Digital Systems, Masters
Thesis, Naval Postgraduate School, Monterey, CA, Dec 2000.
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performance of the two systems is relatively similar through
all five pipelined designs: one, two, four, six and ten
stage implementations. For the one-stage system, the
synchronous system 1is 40% faster than the asynchronous
design in terms of throughput performance. For the ten-stage
multiplier, the synchronous implementation is 1200% faster,
5.56x10° multiplies-per-second versus 2.50x10° multiplies-
per-second. Power consumption of the one-stage asynchronous
system is 30% lower than the synchronous version while the
ten-stage asynchronous multiplier consumes 34% less power.
The overall device count of the synchronous system as
designed is considerably 1lower than the asynchronous
multiplier due primarily to the types of memory elements
chosen for implementation. Major Calvert has <chosen a
current mode latch as the basis of the D Flip-Flop used in
the synchronous design. The asynchronous design utilizes
cross-coupled NOR gate latches in the stage registers which
require ten more devices per element to implement.
Therefore, the asynchronous design will require a larger,

more complex layout.

An in-depth study of the merits of asynchronous versus
synchronous design techniques has been accomplished through
this research. Although not as technologically mature as
synchronous logic design, asynchronous techniques display
potential for the future, especially when system power

consumption is a primary concern.
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I. INTRODUCTION

A, PURPOSE OF RESEARCH

The purpose of this research is to determine whether
there is a better method for building a high clockrate
digital system other than the clocked, synchronous method
primarily used in today's Complementary Metal Oxide
Semiconductor (CMOS) digital systems. As logic propagation
delays become smaller, and especially for systems
implemented with exotic, high-speed technology such as
Indium Phosphide (InP), companies that design and fabricate
digital systems are running into physical and timing
limitations. Circuit designers are continuously looking for
methods to build a better mousetrap. One technology that has
shown promise is asynchronous or self-timed logic. The goal
of this thesis will be to utilize a moderately complex
circuit, an 8x8-bit multiplier, to compare the speed, size,
and power consumption of synchronous versus asynchronous

high-speed logic.

B. DEVICE SPEED

Digital design is driven by many factors not the least
of which is device speed. Whether the processor is a
personal computer, a Digital Signal Processor (DSP), or an

embedded controller, one of the first specifications a




customer or system engineer will consider is the freqguency
at which the device will operate. The speed of the system is
determined by the minimum 1length of time at which the
components in the systems can operate and continue to
produce valid results. To increase speed, the design
engineer must at a minimum consider the physical
capabilities of the underlying transistor technology and the
length of the critical logic path in the system.

Indium Phosphide heterostructure Dbipolar junction
transistors (InP HBTs) produced by the Hughes Research
Laboratory are utilized as the basis for this research.
Logic gates designed with InP HBTs have a much shorter
propagation delay than logic gates developed with the CMOS
transistors used most often in digital logic design. Designs
incorporating InP HBTs are, therefore, capable of higher
operating frequencies.

Single logic gates do not determine the overall speed
of an IC. Designers make use of gates in series and parallel
to perform the desired function. The critical path is
typically the 1longest series of logic gates which is
unbroken by memory elements or registers. The minimum
operating period of the device will be driven by the total
propagation delay from the start to the end of this path.
Historically, design engineers have increased the speed of
processors by pipelining these paths. Pipelining involves

splitting wup the length of the <critical path by



systematically introducing memory elements (Figure 1). When
pipelining a circuit, consideration must be given to design
trade-offs that include the increased layout area and power

consumption required by the additional memory elements.
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Figure 1. Logic Pipelining .

(From Ref.[1])

C. PIPELINED MULTIPLIER

Digital Signal Processors are embedded in numerous
technologies in today's commercial and defense markets. For
example, overhead collection platforms require extremely

capable high speed DSPs to provide data




compression/decompression and data encryption/decryption to
produce and securely transmit the high volume of real-time
traffic required for today's technologically oriented
battlefield. The arithmetic logic units (ALU) and digital
multipliers performing these calculations are at the heart
of any DSP. In a future network-centric battle, victory may
be determined by which side can move data most efficiently
and accurately; who can add, subtract, multiply and divide
the quickest.

An 8x8-bit multiplier is a moderately complex digital
circuit that 1lends itself well to the purpose of this
research. It can be sufficiently pipelined in a number of
configurations to make comparisons both within a logic class
(asynchronous vs. asynchronous) and across logic classes
(synchronous vs. asynchronous). The 8x8-bit multiplier can
also be quickly scaled to produce the 16x16;bit or larger

configurations found in many DSPs.

D. RELATED WORK

There is an extensive body of work available for review
in synchronous design techniques. Computer aided design
(CAD) tools contain large 1libraries of  synchronous
components and cells which circuit designers routinely use
(Ref.[2]). Major John Calvert of the Naval PostGraduate
School has designed a synchronous implementation of the 8x8-

bit pipelined multiplier that 1s wutilized for direct



comparison to the asynchronous design of this research
(Ref. [3]).

There is also a large body of work available for
reference concerning the potential advantages of
asynchronous design (Ref.[2]). Asynchronous circuits have
been designed and tested, primarily in CMOS technology, for
comparison to synchronous realizations (Refs. [4], [5], [61,
and [7]). However, no work could be found which implements
the type of high-speed technology represented by InP HBTs.
The increased frequency capability of these transistors
highlights some of the disadvantages of synchronous design
such as clock skew. This research clearly demonstrates the

potential for asynchronous realizations in future systems.

E. THESIS ORGANIZATION

The second chapter of this thesis concentrates on the
concepts of synchronous and asynchronous digital design. The
advantages and disadvantages of the two technologies are
addressed. Several asynchronous design methodologies are
also described.

Chapter III breaks down elements of asynchronous or
self-timed pipelined design. The handshake process and
control circuitry required are detailed in this portion of
the thesis.

Multiplier design and pipeline considerations are

covered in Chapter 1IV. Chapter IV also includes the




simulation results for each implementation of the self-timed
pipelined multiplier using InP HBTs. Tanner SPICE (TSPICE)
schematic simulation model results focus on the latency,
throughput, power consumption and overall device counts
realized for each implementation.

In Chapter V, synchronous design results are compared
directly to these asynchronous outcomes. At this point, the
primary question of this research is revealed; 1is it

possible to build a better system?




II. BACKGROUND

A. SYNCHRONOUS DESIGN
1. Methodology

Synchronous logic designers rely on a clock signal to
lend stability and discipline to their systems. The clock
controls data flow and result storage and allows the system
engineer to design with 1little regard to hazards and
feedback (Ref. [8]).

Figure 2 depicts a process that incorporates
synchronous design techniques. Operands are fed into a
system of logic gates and clocked into a storage element, in
this case a register, after the end result has stabilized.
This result will not be output until &all logic transients

have settled. The clock period is given by the following:

Tu2To + 1o +T,

clock = skew

Equation 1

where T, is determined by the worst-case propagation delay
of the process and T, is given by the propagation delay and
set-up time of the register. Worst-case or maximum
propagation delays are utilized so that the system will
avoid any metastability that could occur in the process. The
latency of this system is defined as the time it takes one
set of operands to propagate to the output and is equal to

Taoex i this example. The throughput of the system is the




rate at which the results will appear at the output, in this

case 1/T.ock-

Figure 3 represents a pipelined implementation of the

Tp Treg
Input E Ouiput
o
Clock ¥
< T »

clock
Figure 2. Non-pipelined Synchronous Process

(After Ref.[9])

process depicted in Figure 2. The clock period is determined
by:

T

cloc:

kZTS+TREG+Tskew Equation 2

where T, is the worst-case section propagation delay and T,
is the clock skew which will be discussed in detail. The
latency of this system is determined by the degree to which
the original process is pipelined. If there are k slices,
then latency is k*T..., Wwhich will be longer than the
original 1latency due to the added register delays.
Throughput of a full pipeline is still determined by 1/T ..

which is now a higher frequency. It is important to note




that the sections are not required to be of equal

propagation length. However, the clock period is determined

Output
e

9 Register
|9 Register
Iy Register
-9 Register

Ly| Register

i it

Figure 3. Pipelined Synchronous Process

(After Ref.[9])

by the section with the longest propagation delay;
therefore, it is most efficient to slice the process into
similar length delay paths.

2. Advantages

Synchronous techniques have been the backbone of design
for decades because they work. System engineers in academic
and commercial environments have studied these methods in
detail and synchronous technology is generally understood.
As previously stated, the bulk of computer-aided design
(CAD) systems have large component libraries of synchronous
circuits and cells 1ready for wuse. Synchronous design
techniques have matured along with device £fabrication
technologies to produce reliable high clockrate systems.
(Ref. [2])

3. Disadvantages

The small size and high complexity of today's IC

systems highlight the disadvantages of synchronous design




techniques. These include: clock skew, worst-case system
performance, power consumption, modularity, and technology

migration (Refs. [2], [8], and [10]).

a) Clock Skew

Synchronous technology requires a global clock
system to provide the discipline and order that make complex
digital systems work. On large system-on-a-chip ICs, the
clock distribution tree takes up an inordinate amount of
layout area and consumes a large percentage of power. Due to
the inaccuracy of cﬁrrent fabrication techniques to
precisely reproduce components and cells on a single wafer,
the required global clock transitions will not occur at the
same time throughout the system. The propagation delay of
metal interconnects also effects clock timing across the IC
and enhances the size of the deviation from precise
synchronization. Clock skew is a measure of this deviation.

For slower systems, clock skew is largely ignored
because it is a small fraction of section or register
propagation delay and therefore can be accounted for with a
small clock timing safety margin. However, as feature size
is reduced and systems operate at higher frequencies, clock
skew becomes a larger percentage of the theoretical clock
period. Designers expend time and effort dealing with clock
skew problems to fully optimize their synchronous systems.

Clock skew is especially critical in two and four phase

10




clock systems that rely on stringent clock signal overlap

constraints to work properly.

b) System Performance

The clock period of a synchronous system is based
on the worst-case propagation delay of the critical path in
the design. This worst-case propagation delay can be
effected by a number of.factors to include: the fabrication
process, system temperature, and supply voltage. The system
engineer must have reliable <chip test facilities to
accurately measure the worst case scenario. Typically, this
scenario occurs only a fraction of the time; however, the
engineer must utilize this situation to design the global
clock. Throughput and latency optimization is impacted by

this worst-case criteria.

c) Power Consumption

A good analogy for the power consumption of
synchronous systems is the operation of traffic lights late
at mnight. Whether there is traffic to service or not,
stoplights will continue to switch from green to yellow to
red, wasting energy. The same can be said of synchronous
digital systems; the clock will continue to operate and the
entire IC will continue to consume power whether there are

operands in the pipeline or not. This is critical in CMOS

11



design because these clocked transitions drive peak power

consumption.

d) Modularity

Synchronous designs are difficult to connect to
the outside - world that 1is asynchronous by nature.
Asynchronous inputs to a synchronous design can lead to
metastable states in the input registers or first stage of
logic. There are methods to decrease the likelihood of
metastability; however, none are guaranteed. Interconnecting
synchronous systems that are running at different clock

frequencies can also be a difficult engineering task.

e) Technology Migration

One method of increasing the speed of an IC is to
decrease the size of the layout area. This decrease in size
typically realizes shorter propagation délays for system
components and higher yields during wafer fabrication.
However, when scaling a process, the system designer must
again determine the critical path and reengineer the global
clock signal. This process is time consuming and financially
costly.

Integrated circuits can also be improved in parts.
A redesign of one portion of a system is possible to realize
overall gains. In a synchronous system, partial redesign is

not a worthwhile exercise unless the critical path of the

12




system 1is targeted. For instance, a system engineer would
not redesign a DSP multiplier if the instruction decode

section was the critical path of the processor.

B. ASYNCHRONOUS DESIGN
1. Methodology

Asynchronous circuit design has been a topic of
research since the infancy of the IC technology field.
However, the dominance of synchronous techniques has often
overshadowed asynchronous methods. The disadvantages of
synchronous designs highlighted previously call for a closer

investigation of asynchronous technology.

a) Truly Asynchronous

Truly asynchronous systems are speed independent
and delay insensitive; they produce outputs when the process
is complete, not before or after. Asynchronous systems that
are speed independent and delay insensitive are extremely
difficult to design and implement. Digital logic components
and circuits do have critical paths and differential timing
considerations that must be taken into account when
designing truly asynchronous systems. Asynchronous systems
must be free of static and dynamic hazards and critical
races. The size and complexity of today's ICs makes truly
asynchronous design virtually impossible. Engineering

academia has historically recommended synchronization of

13




asynchronous inputs followed by synchronous state machines

(Refs. [7] and [91).

b) Two-rail System

One asynchronous method that has shown promise is
a two-rail implementation. The two-rail system codes logic
outputs to allow for signaling of operation completion. The
state table for a sample two-rail system is displayed in
Table 1. In this example, operation completion is signaled
by the appropriate 01 or 10. To function properly, it must
return to the null state (00) before the next set of

operands can be loaded for evaluation. (Ref.[11])

Aéknowleagé—Nﬁil - - YOO;:"
Data Value-logical 0 01
Data Value-logical 1 10

Not Allowed 11

Table 1. Two-rail System State Table

c) Micropipeline

The micropipeline method represents a self-timed
implementation of asynchronous design. This method relies on
a locally timed handshake protocol to control operand

propagation. Figure 4 represents the micropipeline

14




Input 3 5 5 5 5 5 Output
5 > £ 3 5> E
4 & & 4 & -4
“Reguest P BT ~=p| B 3 g |~~~»[Detay }-—» - Delay |-» “Request
[ = =3 F=1 = =1
. k S| < 3 ] PR 3 ] PR
Acknowledgel | LT L — Acknowledge

Figure 4. Asynchronous Micropipeline

(After Refs.[2] and [12])

technique. A request or data valid signal is transmitted to
the register when the inputs to the register have stabilized
after the required delay. The register cannot accept inputs
until the following register acknowledges receipt of the
previous data. This local handshake scheme ensures that only
valid data will be forwarded through the pipeline (Refs. [8]
and [12]).

The micropipeline handshake is usually either a
two-cycle or four-cycle implementation (Figures 5, 6). The
two-cycle protocol is a signal transition scheme that has
benefits when considering CMOS applications because it does
not have multiple 1line transitions for each handshake.

Theoretically, this technique 1lends itself to speed and

\ AN request N A ’[:;_—\
R A SN AT

) B R I
w N N m 2228 =

Figure 6. Four-cycle Handshake

~m~——_

Figure 5. Two-cycle
Handshake (From Ref.[2])

(From Ref.[2])
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power consumption benefits. However, the complex signal
transition control of two-cycle handshaking requires event
driven latches that are component intensive and difficult to
design in the current-mode logic (CML) wutilized in this
research. The four-cycle protocol is simple to implement and
requires fewer components than the two-cycle routine.
(Refs. [2] and [13])

The delay element in the control path allows for
valid operation of the micropipeline. This time delay in
coﬁjunction with the inherent control delay of the
appropriate handshake scheme allows for the operands to be
accurately n@nipulated‘before output data is clocked into
the memory element. In this manner, the micropipeline scheme
is very similar to synchronous techniques; worst-case timing
delays are utilized to insure hazard avoidance. However,
these worst-case scenarios are locally evaluated allowing
for much greater system flexibility. As indicated in Figure
4, the propagation delays of individual sections of the
pipeline are critical because the control delays are modeled
after these local requirements. At a minimum, micropipelines
display improved latency behavior when compared to

synchronous implementations.
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2. Advantages

a) Clock Skew

Asynchronous logic does not rely on a global clock
signal to maintain system stability; therefore, clock skew
is not a factor. Micropipelines have issues with the timing
and propagation delay for the handshake control signals;
however, these are local timing issues and they are simpler

to handle on a small scale.

b) System Performance

Asynchronous logic typically displays average case
propagation delay through the pipeline wvice the worst-case
scenario of synchronous logic. For truly asynchronous and
two-rail systems when the logic gates in the pipeline have
completed their tasks, the data is moved along.
Micropipelines will typically utilize worst-case control
delays; however, these are local pipeline path issues vice a

system-wide worst-case concern.

c) Power Consumption

The stoplight analogy is wvalid for asynchronous
logic. The lights will only operate when there is traffic to
pass; otherwise, the system is idle. This 1is especially
critical in CMOS technology because the idle state consumes
very low power. To take the analogy one step further,

asynchronous logic is more efficient because it allows the
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traffic to continue through a set of properly timed lights.
Traffic lights in a synchronous system will blink on and off
in conjunction with the longest time in the entire system
that it takes to cross between two intersections. Data
crossing a short path must wait for the entire worst-case
delay. In an asynchronous system, the lights will be timed

for the actual propagation delay between each intersection.

d) Modularity

Asynchronous systems can be built in small stages
and connected without regard to a global clock. As long as
the appropriate design constraints have been met and the
handshakes are in place, the stages will piece together
nicely. Asynchronous techniques are also useful for

interfaces with the asynchronous real world.

e) Technology Migration

Truly asynchronous systems are scalable without
any regards to clock signals which saves in development
time. For a micropipeline system, improvement in one path of
the circuit can lead to overall gquality gains in the IC. A
shorter propagation delay in one stage will improve entire
system latency; therefore, it is worthwhile to redesign any

path in the system.
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3. Disadvantages

The advantages of asynchronous design make it appear to
have the future design market cornered. However, there are
disadvantages that include: design techniques, circuit
complexity and size, system speed, and test and evaluation

methods (Refs. [8] and [10]).

a) Design Techniques

As discussed, truly asynchronous 1logic 1is very
difficult to design quickly. Static and dynamic hazards and
critical races must be eliminated. Additionally, synchronous
logic techniques dominate the circuit design and fabrication
field. There are very few CAD systems that support
asynchronous design. In fact, many tools have circuit
optimization routines that could delete a 1logic gate
required for asynchronous operation, thereby reintroducing a
hazard.

Another barrier to asynchronous design is the
historic aversion of design engineers to the topic. Academia
has stressed for decades the reliability and wutility of
synchronous design. Engineers have been taught to
synchronize asynchronous inputs and build globally clocked
machines to handle the required calculations (Refs.[1] and

[101).
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b) Circuit Complexity and Size

Truly asynchronous designs are difficult and
complex to realize. They routinely require more components
and cells to eliminate hazards; therefore, they require more
layout area. Two-rail systems are larger and more complex
because they require extra logic gates to realize the double
signal output. Micropipelines closely resemble synchronous
systems in terms of logic gate requirements for the data
path; however, the handshake control path could require a
larger total layout area than the global clock. The
handshake protocol is also more complex than the

synchronizing clock method.

c) Speed

Implementation of two-rail systems has actually
proven to be slower than similar synchronous systems. Each
data item of the two-rail method must be evaluated, probably
with a state machine, which takes longer than standard
single-rail 1logic. Micropipelines can be made qﬁicker
latency-wise than their synchronous counterparts as long as
the handshake control delay is not longer than the data
propagation path. However, there will be no overall
improvement in the throughput of similar systems. The
longest propagation delay path will still determine the
throughput of a micropipeline system. Data behind this

worst-case path must wait to move down the pipeline until
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the acknowledgement or data accepted handshake has been
received. The highest rate of input to the system, and
therefore the highest throughput, will be determined by the

period of this critical path.

d) Test and Evaluation

The bulk of device test equipment is committed to
utilizing synchronous inputs to determine sampled results.
Asynchronous designs require more complex test and
evaluation tools that are not present in the fabrication
plants and engineering 1labs of today. The advantages of
asynchronous logic will not come to fruition until a large
volume of reliable, tested systems reach the marketplace.

(Ref. [10])

C. CHAPTER SUMMARY

Synchronous and asynchronous design techniques have
been studied and utilized since the advent of integrated
circuit technology. For decades, synchronous methods have
dominated in both the academic and commercial design arenas.
As IC gsystems become smaller, faster, and more complex,
asynchronous schemes will continue to mature and carve out a

larger niche in the integrated circuit market.
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III. MICROPIPELINE HANDSHAKE PROTOCOL

A. HANDSHAKE TIMING

The benefits of asynchronous design can only be
realized by performing a detailed analysis of the various
timing requirements inherent in the micropipeline protocol.
Recall from Equation 2 there are stringent timing parameters
that must be maintained for synchronous 1logic to work
properly. Similar equations can be derived for asynchronous
micropipeline operation. With these tools, theoretical
comparisons are made to synchronous logic techniques.

1. Request Control Timing

Figure 7 depicts a micropipeline stage with the
required elements to perform timihg analysis. The Muller-C
element represents the control logic interface and is the
backbone of the four-cycle handshake (Ref.[12]). The request
signal from the previous stage is represented by Data Valid
In (DVI) and the acknowledge by Data Accepted Out (DAO) from
the next stage. The control logic output is Data Valid Out
(DVO) to the next stage and DAO to the previous stage. The
Data Valid Out signal is also synchronized with a Latch
Close (LC) signal to the memory element. During the request
cycle, the propagation length of the data path must equal

the propagation length of the control path. Taken from the
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Figure 7. Single Stage Micropipeline

initial request signal at the input to MullerC #1, the data

path will display the following dependencies:

T datapath 2 T MC#1DVO + I;tchdrvmax + T;ogDeI + T;tch + ];et—up Equation 3

where

Tyesipvo 1S the propagation delay of MullerC #1 (to DVO),

T tcharwmax 1S the maximum delay of the latch driver,

quwel is the maximum propagation delay of the path

logic,

Tieen 1is the latch propagation delay, and

is the latch set-up time.

Tset—up

The control path behaves according to Equation 4:
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T, iror Z Toscsipvo + Lietayetemens + Thyicsapvo + Ticharvmin Equation 4

where

Tgelayelement 1S the required control delay,
Tiymcuzpvo 1S the propagation delay of MullerC #2 (DVO), and

Titchdrvmin 1S the minimum propagation delay of the latch

driver.

-The data path and control propagation equations can be
directly compared. Equation 5 depicts the first
micropipeline design timing equation.

Equation 5

>(T -T )+(T - )+T  +T + -
delayelement MC#1DVO MC#DVO Itchdrvmax Itchdrvmin log Del ltch set — up MC#2DVO

Assuming that the latch drivers have been designed to have

identical propagation delays, Equation 5 simplifies to:

>T +T +T -T Equation 6
delayelement log Del Itch set — up MC#2DVO
2. Control Loop Timing

Determination of the total period of the control
handshake allows for computation of the overall circuit
throughput performance. MullerC #1 cannot accept a request

signal (DVI) to restart the handshake process until the
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following stage has acknowledged receipt of the previous
data. Therefore, the worst-case closed loop of the control
path will determine the maximum possible system throughput.

Equation 7 evaluates the period of one full control loop:

T >2*T +2*T +2*T Equation 7
- contloop MC#1DVO(avg) delayelement MC#2DA0(avg)

where Tyeupvoravy) rePresents the average DVO propagation delay
of MullerC #1 because it goes through both a low-to-high and
high-to-low transition. Tyemmonmw represents the propagation

delay when the DAO signal of MullerC #2 transitions through
two handshake cycles. For this micropipeline stage, the
delay element has a double impact on the control loop timing
period. Implementing the micropipeline of Figure 9 decreases

this deper.lence. The delay element equation now becomes:

T >T +T +T -T ~T Equation 8
delayelement log Del Itch set —up MC#DVO(l - h) AND(l - h)

where T,,;., 1S the low to high propagation delay of the AND

gate depicted. The control loop equation simplifies to:

T >2*T +T +2*T +2*T Equation 9
contloop MCH1DVO(avg) delelement MC#2DAO(avg) AND(avg)

26




Input Output
—p Logic Delay

"lf Latch [~ [_Latch
Driver

r_l-
g

|

\ 4
ullerC #2;

[

i

lw
<
MullerC #1-4 Latch + Latch
A .
<
O
=
(@)
R
w]
<
3=
N

o
>
o
It
[ %]
o
>
o
T
W

Figure 9. Modified Single Stage Micropipeline

Substitution of Equation 8 into Equation 9 realizes the

final equation for the control loop period:

Equation 10

T >T +T +T +2*T

> +T +
contloop log Del Itch set ~ up MC#2DA0Oavg MCHIDVO(h ~ 1) AND(h - 1)

Assuming T),p.; represents the worst-case stage delay,

Equation 10 determines the period required for throughput
calculation of an asynchronous system utilizing the
micropipeline technique. Figure 10 details the timing
relationships for the four-cycle handshake.

3. Synchronous Logic Comparison

Equation 10 allows for direct theoretical comparison to

timing Equation 2 of synchronous techniques. For
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asynchronous logic to compete 1in a throughput sense,

Equation 11 must hold.
Equation 11

+T =T +T +T +2*T

+T 2 +T
log Del REG skew log Del Itch set — up MC#2DA0avg MCH#1DVO(h - 1) AND(h - 1)

Data Path
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Figure 10. Four Cycle Handshake Timing
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Assuming similar logic delays, Equation 11 simplifies to:

%
T Zﬂm44~ +2 nmmmm@+2wmmmmn+2wmbn—nm;

skew set=up

Equation 12

Asynchronous micropipeline systems operating at peak
capability must comply with Equation 12 to derive throughput

rate benefits.

B. MULLER~-C ELEMENT DESIGN

The Muller-C element is critical to the handshake
control of the asynchronous micropipeline. Signal
propagation delays through the element determine a variéty
of system timing relationships; therefore, Muller-C design
optimization is necessary.

1. State Machine Development

State machine representations have been developed to
implement the four-cycle handshake control.

Muller-C inputs:

DVI: Request from previous stage (Data Valid In)
DAI: Acknowledge from next stage (Data Accepted In)

Muller-C outputs:

DVO: Request to next stage (Data Valid Out)
LC: Memory element control (Latch Closed)

DAO: Acknowledge to previous stage (Data Accepted Out)
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Figure 11 is the state transition diagram developed for
this handshake protocol utilizing a four state Moore machine

approach. Table 2 is the state transition table derived from

this state transition diagram.

DVIDAI
0X or 11

State 00
DVO/LC=0
DAO=0

State 01
DVO/LC=0
DAO =1

State 10
DVO/LC=1
DAO=0

X0

State 11
DVO/LC=1
DAO=1

10

Figure 11l. Moore Machine State Transition
Diagram

| DVI/DAI

01

L
1110

QOCKR

Table 2. Moore Machine State Transition Table
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2. Logic Design

The Karnaugh map for SR latch implementation of the
four state machine is depicted in Figure 12. Current-mode
logic (CML) is optimized wutilizing OR and NOR gate
implementations of digital logic (Ref.[3]). Therefore, the
logic gate representation is given by Figure 13. |

3. Simulation Results

Tanner SPICE tools were used to simulate the logic

Q1/Q2 Q1/Q2
DVID 00 01,11 10 VLD 00 01 11 10
00| 0| o \1 1) 00| X[ xX|0 | o
01| o | o 0\/0 c: x| x|1 |1 >
) 0000 X | x| 1|1
10 ?) o if 1 a‘ 1000 0] X| 0] o
— a—
S, = (Q2*)(DAT*)(DVD)HDAI*)(Q1) R, = DAI
Q1/Q2 Q1/Q2
VLD 00 01 11 10 Dvm)h\ 00 01 11 10
00| o | oo | o x| 1|1 | X
o1l 0| oo | o x{1]1 | x
o
11| o |/1 \ 0 n|l x| ool x
>
1(( 1 \h 1/ 0 0] o o] o] x

S,= (VDA Q1+DVIQ2) R, =DVI*

DVO=Q1 DAO=Q2

Figure 12. Karnaugh Maps for Muller-C Element
Implementation
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implementation. For this simulation, the Muller-C element
drove a fanout of four logic gates. Figure 14 relates the
simulation resulis and timing relationships.

Table 3 details the propagation delays of selected
transitions based on this Muller-C element simulation. As
previously discussed, these statistics are important to the
design of the 8x8-bit multiplier because they represent

delays in the timing control path of the micropipeline.

DAO_-—..
DAIS:‘ o= _DVO/IC

DVINOT " _/— :
e SR

DVONOT / Op en G—‘l ’.‘/_.« mA onot DVONOT/ Open
DAL,

DVINOToe —R control

DRONOToS Q 1

DVINOT ——. DAO

Le . [V L o

DATe- )
O Wy —_—
DVO/LC — S R
| DRONOT

2 1‘ﬂAQnot

DVINOTo— R control

Figure 13. Muller-C Element Logic Implementation
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Low—to—High — 94Yps

DVO High-to-Low 30 ps
DAO . High-to-Low . 40 ps

Table 3. Muller-C Element Propagation Delays

C. SYSTEM SIMULATION TOOLS

Full evaluation of the micropipeline handshake protocol
requires simulation testing to insure the Muller-C element
behaves appropriately when integrated with memory and
digital logic elements. To complete these simulations, key
components must be chosen in the InP HBT logic family. These
include the basic digital logic, the memory or register
elements, and the delay elements critical to the control
signal path.

1. Basic Logic

Major John Calvert has designed a set of basic logic
gates as the building blocks for the 8x8-bit multiplier.
(Ref.[3]). These inverters, buffers, OR, and NOR gates are
based on current-mode logic implementations wutilizing 0.75

mA bias current and InP HBTs. Two and three-input adders
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have also been developed for the circuit from these simple
gates.

2. Memory Elements

Synchronous logic utilizing a single phase clock
requires D Flip-Flops to provide memory element functions.
However, the handshake nature of the ésynchronous protocol
allows for clocked D latch memory elements. Since D Flip-
Flops are typically implemented using two latches in series,
a potential 50% memory power reduction is available for an
equal number of pipeline stages.

Current-Mode logic lends itself to at 1least two
implementations of a clocked latch, a standard cross-coupled
NOR gate method and a current-mode logic latch (Ref.[3]).
The CML latch has a shorter propagation delay and requires
less power for implementation at the same voltage level.
However, it is a more complex circuit and susceptible to
noise in its output. Additionally, this unigque
implementation requires a 2.5 volt process to function while
the standard NOR gate method can operate with the basic
multiplier logic at 2.0 volts, thus saving power throughout
the system. For this research, standard clocked D latches
have been selected for the memory elements. The cross-
coupled NOR gates are biased at 2.0 mA to decrease
propagation delay and allow for a more robust and

predictable output signal. TSPICE simulation convergence and
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completion are inconsistent below this bias threshold. Table

4 summarizes the critical parameters of the two approaches.

- Synchronous = Asynchronous

Memory Element VQDE?lipfqup” D Latch

Voltage : ‘245}&' o 2.0 v

Propagation Delay

;:43gps,' . 31 ps

Low-to-High :
B4 ps 5 ps
High-to-Low SR SRERP
Set-up time ; j'35¢ps Lo 42 ps
Max Total Delay ;; 89 ps H_,T 73 ps
Current vjv,7:O @A" ¥ 7.3 mA

Table 4. Memory Element Comparison

3. Delay Elements

The control path delay elements are modeled with
lossless transmission lines available in the standard TSPICE
library. As illustrated in Figure 15, these transmission
lines are buffered on both ends to reduce the negative
impact the lossless line has on its input signal and produce
a consistent, predictable output. It is possible to produce
nearly lossless transmission lines of the lengths needed for

this research on an integrated circuit; therefore, this
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1000

Figure 15. Delay Element Circuit Diagram

technique lends itself to real-world layout and

implementation as well.

D. MICROPIPELINE SIMULATIONS

Single-stage and three-stage simulations were developed
to wverify system operatibn with the Muller-C element
providing the handshake protocol. The initial Data Valid In
signal was timed to insure that the input latch received and
latched data just as set-up time was achieved to insure the
timing criteria set forth earlier have been strictly met.

1. Delay Element Redesign

The three-stage simulation highlighted a problem with
the integration between the delay element and the proper
data valid input signal to the next stage. For stages with
significant propagation delays, it is possible for a new
Data Valid Out signal to arrive at the AND gate before the

previous delayed signal has cleared the logic. This
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Figure 16. Handshake Timing Results

Delay Element Anomaly

situation provides a false Data valid In (DVI) signal to the
next stage. Figure 16 depicts these simulation results and
highlights the phenomenon.

The delay element has been redesigned to produce a
pulse on the delayed signal line (Figure 17). The concept
was verified in follow-on simulations.

2. Circuit Failure

There are two fundamental failure modes for the timing

relationships in the asynchronous micropipeline model. If

—,W“I>O_"; :-——I 400ps Deley l————* T TN
i : i 10— DvOout

— 7N DVONotout >

YONot

Figure 17. Pulsed Delay Element
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the propagation of the control path delay element is too
short, the data into the next stage will not latch
appropriately, as it will not achieve the set-up time for
the memory elements. Test results are quick and easy to
verify assuming the input latch just meets set-up time.

When the period of the control path is underestimated,
the Data Valid signal into the longest control path will
fire before the Data Accepted signal from the next stage has
been fully received. In time, this will drive the timing
relationships out of 1limits and produce improper system
outputs. Figure 18 graphically represents the results of an

underestimated control path period.

0

Figure 18. Handshake Breakdown-Control Period
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3. Tabulated Results

Table 5 provides results for the one stage and three
stage simulations. The data clearly shows that the timing
equations derived earlier in this research are valid for the
micropipeline handshake technique.
. One Stage Stage Stage

gkt :Stvége':__'. : One Two Three

#1 Latch Drive Max _:'0' ps -v 0 ps 0 ps 0 ps
#2 Latch Drive Min . 0 ps 0 ps 0 ps 0 ps
Logic Delay 2’(’)'Q>‘,_ps::;‘:’i 200 ps 400 ps 100 ps
Tiaten + Tsot-up 73ps 73 ps 73 ps 73 ps
"54'_;ﬂps‘:.: 94 ps 94 ps 94 ps

Ton (1-1) 2aps | 24ps 24 ps 24 ps

Tae1ayerment theoretical .. .0 155 ps | 155 ps | 355.ps | 55 ps.
(Equatiox;_ 8)

Taelayeiomene @Ctual o :”160__ ps 160 ps 1370 ps 60 ps

2* Trcono ovms 140 ps | 140 ps 140 ps 140 ps
2% Ty 0 ave) :.--l,zo’pis-‘;v: 120 ps 120 ps 120 ps

2* T (ave) ': ! 40 P,S";iiv,,:; 1 40 ps 40 ps 40 ps

theoretical ' E 455 ps 455'ps - |- 655 ps 355! ps:

Tconcloopv

(Ec'.ruatiqﬁ‘ 9)

Teont1onp aCtual | as0ps | es0ops | 6s0ps. | 650 ps

Table 5. Micropipeline Simulation results
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E. CHAPTER SUMMARY

The four-cycle micropipeline handshake is a complex
mechanism used to provide 1local timing signals for an
asynchronous logic system. The Muller-C element provides the
state machine functions that control the handshake. By
following the inherent timing relationships between the
logic and control paths of the micropipeline, system
engineers can design operable high-throughput integrated

circuits.
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IVv. MULTIPLIER DESIGN AND PERFORMANCE ANALYSIS

A. MULTIPLIER DESIGN
1. Multiplier Implementations

There are numerous methodologies utilized to implement
binary multipliers. These include multiply-accumulators and

array multipliers.

a) Multiply-Accumulator

The multiply-accumulator is a relatively simple
multiplier implementation. Assuming the multiplier bit is a
logical one, the multiplicand is shifted according to the
multiplier bit position and added to the previous result.
The multiply-accumulate method is illustrated in Figure 19
in both decimal and binary formats. While the multiply-
accumulator 1is simple to design, it requires numerous
ripple-carry addition manipulations which take time to
process. The higher-order bits must wait in turn until the
lower order carry bits have been determined through a series
cof binary adders. Therefore, this implementation inserts

unnecessary delay into the system.

b) Array Multiplier and Carry-Save Addition

For this research, an array multiplier has been
designed that takes advantage of available parallelism and

optimizes memory element requirements and system modularity.
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123 Multiplicand Multiplier Accumulator

27 1 12
3321 123 7 86l carry
123 2 246 € shift
3321
1111011 Multiplicand Multiplier Accumulator
11011 11111112 3 ripple carry
110011111001 1111011 1 1111011
1111011 1 1111011 < shift
101110001
1111011 0 0000000 <4-shift
1111110 ripple carry
101110001
1111011 1 1111011 <-shift
1110000 ripple carry
10101001001
1111011 1 1111011 <-shift
110011111001

Figure 19. Multiply-Accumulator Model

The implementation is a hybrid of the multiply-accumulate
method and a large array multiplier.

Array multipliers can be designed with the entire
multiplier array realized as the first step of the pipeline
with follow-on stages reducing the operands accordingly
(Ref. [1]). This method could require as many as 64 (8x8)
memory elements in the first stage alone which is excessive
when power considerations are taken into account. However,
the full array multiplier can be reduced in the most
efficient manner through a proper carry-save and carry-
complétion adder chain.

Carry-Save addition involves taking the full row
of carry bits as an operand into the next adder stage. The

multiplier operand array is then reduced gquickly to the
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final ripple-carry adder stages. Figure 20 relates the

approach.
1111011 Multiplicand Multiplier Product
11011 1111011 1 1111011
110011111001 1111011 1 1111011 < shift
1111011 0 0000000 <-shift
010001101
0111001 “4—carry
1111011 1 : 1111011 <—shift
1110110001
0110011 <-carry
1111011 1 1111011 <4—-shift
1110000 ripple carry
10110011001
1110110 <—carry
110011111001

Figure 20. Carry-Save Addition Model

2. System Modularity

Figure 20 is a relatively accurate illustration of the
modularity of the multiplier implementation utilized in this
research. The first stage is a Carry-Save Adder (CSA) that
manipulates the eight multiplicand bits and the three least
significant multiplier bits. The carry-save adder is a
system of inverters, buffers, NOR gates and adders that
provides a row of eight sum bits and a row of eight carry
bits to the next stage. The next five stages of the
multiplier manipulate the multiplicand and the remaining
five multiplier bits in order. The final eight stages of the
system provide a series of Carry-Completion Adders (CCA) to

.realize the final 16-bit product (Figure 21).
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Figure 21. 8x8-bit Multiplier Schematic
(From Ref.[3])

In order to pipeline the multiplier, registers are
placed between selected Carry-Save or Carry-Completion
Adders. Figure 22 is an example of a four stage pipeline
utilizing these modular units. A more in-depth perspective
into specific system design of the multiplier can be found

in Major John Calvert's Naval Postgraduate School Master's
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thesis which investigates a synchronous implementation of

this 8x8-bit system (Ref. [3]).

Input Operands

/te /#8

16-bit Input Register

3 Carry-Save Adders

31-bit Register

3 Carry-Save Adders

23-bit Register

4 Carry-Completion Adders

20-bit Register

4 Carry-Completion Adders

16-bit Output Register

/#16

Product

Figure 22. Four Stage Pipeline
Example
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3. Critical Path Determination

To fully optimize the asynchronous pipelined
multiplier, it is imperative that the critical path of each
pipeline stage be determined. Critical path determination
involves finding the maximum propagation delay from start to
finish of a micropipeline stage. In a synchronous system,
the requirement is to find only the single worst-case logic
delay path for the entire multiplier implementation. For a
micropipelined system, the critical path and propagation
delay must be determined for each stage.

Intuitively, it would seem that the critical path of a
pipeline stage will simply be the summation of the maximum
propagation delays of each of the series elements in the
particular stage. For the ten stage pipelined implementation
of this research, this concept holds relatively true.
However, the circuit designer must also consider possible
dynamic logic hazards when, for example, a stage output
transitions from high-to-low and back to high during one
request-acknowledge period. Figure 22 details an example of
one such potential occurrence for the second Carry-Save
Adder of the 8x8-bit multiplier. If the operands into the
NOR gate have been delayed long enough for the adder to
produce the logical one on the output before the NOR gate
output stabilizes, the adder will actually transition from

low-to-high and back to low. Without considering these
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timing implications, a system designer could easily mistake
the propagation delay for this sum bit as zero because it
starts and finishes in the low state. However, a more in-
depth analysis reveals that there are two transitions which
must be considered for the pipeline stage delay on this sum

bit output.

Hi-Lo Lo-Lo

Lo-Hi Lo-Lo

X Y Z

3-Input Adder

Carry Sum

Lo-Lo-Hi Lo~-Hi-Lo
Figure 22. Sum bit Critical Path
Dynamic Hazard
As previously stated, the summation of the longest
propagation delays for the series elements in a thinly
sliced pipeline will allow for a reasonable estimation of
the length of the critical path for that stage. However, for

longer pipeline stages and for the single stage 8x8-bit
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multiplier, these system hazards make accurate determination
of the critical path extremely difficult. Without this
knowledge, the system can not be efficiently designed or
tested as all possible operand combinations must Dbe
considered. Intuitively, it might seem that 255*255 (2°-1)?
would provide the operands for the worst case system path as
the largest 16-bit product will be realized. It is important
to consider that the most-likely worst-case operands will,
at a minimum, produce a complete ripple-carry through each
of the final Carry-Completion Adders in a non-pipelined
system. The intuitive case does not provide for this
eventuality.

For this research, a C++ program was developed which
evaluates 2567 éeparate operand pairs while resetting the
system to the all zero case between each test. The program
time steps the multiplier in one pico-second increments and
accurately predicts the occurrence of dynamic hazards and
highlights potential ~worst-case operands. This tool was
utilized to determine the operands which drive the critical
path for each pipelined implementation of the multiplier.
Tanner SPICE simulations of various sets of these operands
indicate that 1likely critical paths have been identified.
Additionally, the synchronous and asynchronous evaluations
of the multiplier both utilized the same operand pairs to

maintain an accurate comparison.
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Figure 23 is an example of the ripple-carry effect
which drives the critical path length of a single stage
micropipeliné of the 8x8-bit multiplier. The darkest
waveform represents P[10], the tenth product bit, which
transitions from 1low-to-high-to-low two times during the
simulation of one set of operands. Additionally, higher
order bits also make transitions from low-to-high-to-low
before the system has actually produced a stable output. The
operand pair that drives this scenario was predicted by the

C++ program.

Voltage (V)

Figure 23. Ripple-Carry Example for
Critical Path Determination
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B. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

Five separate implementations of the micropipelined
8x8-bit multiplier were developed and simulated using Tanner
SPICE tools. The steps in the development and test process
included determination of the logic delay between each stage
followed by multiple simulations of each micropipeline stage
to determine the delay element requirements. Finally, these
timing values along with voltage and current data for each
implementation were analyzed to determine the optimum
multiplier configuration. The metrics used include system
latency, throughput, power consumption, speed-power ratio,
and device count.

1. Simulation Results

a) Timing Relationships

The 1logic for each pipeline stage of the
multiplier was simulated to determine the basic logic delay
involved. Input and output operands for each pipeline stage
were chosen based on those predicted by the C++ program
previously discussed. These sum and carry operands form the
basis of the test data for the bulk of the micropipeline
simulations.

After logic simulation, the equations developed in
Chapter III were utilized to determine the requirements for
the delay elements between each stage. Lossless transmission

lines were utilized to implement the delay elements.
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Adequate bracketing of the required delays was accomplished
to insure optimum system performance. Figure 24 illustrates
both a wvalid and invalid test of a micropipeline stage. In
this case, the critical output bit for the stage fails to
achieve latch set-up time in the second simulation.
Systematic evaluation of all five multiplier implementations
realized delay element requirements for further timing

relationship analysis. Additionally, the control period
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Figure 24. System Performance Bracket

relationships were estimated and evaluated for the worst-
case path for each multiplier. These tests determine system

throughput as previously discussed.
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b) System Current Requirements

Separate voltage sources were designated in the
Tanner SPICE schematics so that current requirements could
be determined for the different functions inherent in the
system. Each gate has either a logic element, control
element, or memory element DC voltage source of 2.0 volts.
Graphical results of the current used by these wvoltage
sources allow for quick power consumption calcualtions.
Tables 6 and 7 detail the timing and power requirements for

each stage of the separate multiplier implementations.

Multiplier Implementation

One Stage Two Stage Four Stage
Stage 1 1 2 1 2 3 4
Latch Drive Max (ps) 40 40 41 40 41 41 40
Next Latch Drive Min (ps) 40 - .39 40 38 39 38 40
Logic Delay (ps) 790 380 420 230 230 200 240
Delay Element theoretical (ps) 755 346 386 197 197 168 205
Transmission Line theoretical (ps) 725 - 316 356 167 167 138 175
Pass 730 325 375 185 185 150 200
Min Period (ps)
Theoretical 1045 676 495
Pass 1050 ‘680 510
Throughput (x10°MPS)
Theoretical 0.96 148 2.02
Actual 0.95 1.47 1.96
Latency (ps) 870 960 1220
Logic Current 1101 1101 1101
Memory Current 353 586 1095
Control Current 114 186 340
Total Current (mA) 1568 1873 2536
Logic Power 2202 2202 2202
Memory Power 706 1172 2190
Control Power 228 372 680
Total Power (mW) 3136 . 3746 5072

Table 6. Timing and Power Data for One, Two, and Four
Stage Implementations
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2. Multiplier Performance Analysis

The previous tables supply the bulk of the data
required to make performance evaluations of the
micropipelined 8x8-bit multiplier. Graphical representations

have been developed to relay selected performance metrics.

a) Latency

The latency of the system is defined as the time
it takes the first set of operands to transition through the
entire multiplier and provide a stable product out of the
output memory register. As the number of pipeline stages
increases, latency performénce degrades due to the
propagation delay of the added memory register banks in the

logic path.

b) Throughput

System throughput is a measure of the rate at
which operands can be fed into the system and sﬁill realize
accurate output. The throughput of the micropipelined system
is bounded by the handshake control period as discussed in
Chapter III. Latency and throughput for the separate
implementations of the asynchronous 8x8-bit multiplier are
graphically represented in Figure 25. For this research, the

throughput units will be in multiplies-per-second (MPS).
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Figure 25. Micropipeline Latency and Throughput

c) Power Consumption

In order to relate the relative contributions of
the logic, memory, and control elements, a multi-dimensional
bar graph is utilized to depict system power consumption
(Figure 26). As expected, analysis indicates that as the
number of pipeline stages increases, the memory elements
consume the bulk of the system power. As an example, for the
two stage system, the logic consumes 60% of the total power,
the control elements 10% and the memory devices 30%. When
‘pipelined to ten stages, these elements consume 24%, 17% and

59% respectively.
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Pipeline Stages

Figure 27. Micropipeline Power Consumption

4) Speed-~-Power Ratio

The speed-power ratio is a good metric of system
efficiency that relates systém throughput to total power
consumed. The maximum point of the speed-power ratio curve
indicates the optimal system pipeline configuration. The
negative aspect of increased power consumption is balanced
against the benefit of higher system throughput or device
speed. The graph of Figure 28 1indicates that optimum
efficiency of the asynchronous 8x8-bit multiplier lies

between the two and four stage implementations.

e) Device Count
The number of transistors and resigtors in an
integrated circuit relates directly to the area and

complexity of the layout regquired to fabricate the system
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Figure 28. Micropipeline Speed-Power Ratio

(Re£.[14]1). The logic, memory, and control devices of the
different stage implementations of the 8x8-bit multiplier
have been tabulated and are presented graphically in Figure
2%. Similar to the power consumption results, as the number
of pipeline stages increases, a large percentage of the
devices recguired for fabrication fall into the memory

element category.

C. CHAPTER SUMMARY

An 8x8-bit asynchronous multiplier has been designed
and systematically tested through a range of input operands
in a computer simulation environment. The results of these
simulations indicate that the implementation shows promise
in terms of overall system power consumption. Eowever, the

time lost in the four-cycle handshake protocol limits system
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Figure 29. Micropipeline Device Count

throuchput. The next logical step, comparison to an optimum
design of a synchronous multiplier, is completed in the

following chapter.
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V. COMPARISON TO SYNCHRONOUS IMPLEMENTATION

A. PERFORMANCE ANALYSIS

Major Calvert has designed a synchronous implementation
of the 8x8-bit pipelined multiplier using similar logic
configurations to the multiplier disussed in the previous
chapter (Ref.[3]). The primary differences between the two
approaches lies in the choice of memory elements and in the
method of control and synchronization. For the synchronous
implementation, the Current-mode Latch forms the basis for D
Flip-Flops utilized in the register banks. These latches
have superior propagation delay properties; however, they
require 2.5 volts to operate. Additionally, the clock
drivers in the synchronous system require a 2.0 mA bias
current to function effectively. For the asynchronous
system, the cross-coupled NOR gate latch can operate with
2.0 volts and 0.75 mA bias current drivers. Because the
asynchronous system can utilize latches vice Flip-Flops as
memory elements, the loss in propagation delay
for the multiplier logic path 1is generally not realized.
However, the throughput of the asynchronous system is
governed by the propagation delay of the Muller-C elements,
which is extensive and effected only by standard 1logic

propagation properties.
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For the comparison between the two types of
implementations, the metrics used include system latency,
throughput, power consumption, speed-power ratio, and device
~count. Table 8 summarizes the critical data.

1. Latency

Analysis of the data from table 8 indicates there are
no real trends for latency performance between the two
implementations. Theoretically, the asynchronous technique
should display a shorter latency period; however, numerous
factors mitigate this advantage. First, minor logic
implementation differences between the two multiplier
approaches allow for slightly different system logic delays.
The primary reason the latency results are inconclusive is
that the synchronous and asynchronous multipliers are sliced
relatively equally between the stages for most of the
implementations. The asynchronous method has a shorter
latency period when there is a large disparity between the
longest and shortest stage delay paths. When they are
essentially equal, no improvement in performance is

realized.
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2. Throughput

Figure 30 relates the difference between the

trf

synchronous and asynchronous approaches in terms of system
throughput. As expected, the synchronous system far
outperforms the asynchronous implementation for this metric;
especially when the multiplier is heavily pipelined. The
time delay inherent in the four-cycle handshake limits the
speed performance of the asynchronous method. The throughput
of the asynchronous method does increase linearly; however,

not at the pace that the synchronous method increases.

Throughput (MPSx10°)

4
Pipeline Stages

Figure 31. Throughput Comparison

3. Power Consumption

The asynchronous multiplier implemented in this

F=

research demonstrates superiocr performance in terms of




system power consumption (Figure 31). The 2.0 wvolt versus
the 2.5 wvolt power rail determines a large portion of the
power savings. The relative current loads drawn by the
elements in the system also play a zxole in the power
consumption differential. The logic and memory elements
maintain a relatively consistent relationship across the
different stage implementations; however, the zreguirement
for 2.0 mA clock drivers for the synchronous system realizes
a higher current load overall. For instance, the control
elements of the asynchronous one-stage nmultiplier require
39% less current than the clock drivers of the synchronous

system. In the ten-stage implementation, it is a 54

o\

difference. This comparison highlights the theoretical power

savings predicted for the asynchronous system.

Power Consumption (Watis)

Pipeline Stages

Figure 31. Power Consumption
Comparison
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4. Speed-Power Ratio

The speed-power ratio displayed by the synchronous and

[ES
3

asynchronous multiplier implementations are depicted

Figure 32. This graph includes representations of

ct
¢
t+
®

synchronous implementations over several values of
theoretical clock skew. For wmultipliers with low levels of
pivelining, the depth of the global clock distribution tree
is minimum; therefore, the impact of skew 1is not as
prevalent for the one and two-stage implementations. As the

number of pipeline stages increases, these skew values

o
4

Speed/Power Ratio
§

ASYNCRONOUS wggm SYNCHIONOUS mg TYDICE! SKEW g

T T S

Figure 32. Speed-Power Ratio
Comparison
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consume more of ﬁhe minimum clock period regquired with a
corresponding decrease in system speed-power ratio. The
typical skew value as depicted was calculated Dby
approximating device induced skew as 20% of the worst-case
propagation delay for the synchronous clock driver circuit.
For the ideal synchronous implementation, the high
throughput rate attainable significantly outweighs the power
advantage gained Dby the asynchronous technique. However,
when the effect of clock skew is added to the comparison,
the peak speed-power ratio of the asynchronous multiplier
begins to approach that of the synchronous design. (Ref[3]).

5. Device Count

As previocusly discussed, the device count wetric
displays relative chip layout area for a given integrated

system. Figure 33 indicates that the synchronous system

Total Devices

Pipeline Stages

Figure 33. Device Count Comparison
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would reguire a smaller chip area and may predict a hicher
wafer yield fdr system fabrication. Smaller individual chip
area would equate to more systems on a single silicon wafer,
which 1s more cost effective (Ref.[14]). The Ilargest
contributing factor to increased <chip area for the
asynchronous technigque 1lies in the choice o©f memory
elements. The D Flip-Flop regquires 20 transistors and 10
resistors to produce while the cross-coupled NOR gate latch
requires 24 transistors and 16 resistors to implement. The
synchronous logic therefore requires 10 fewer devices per
element which is extensive in the 31 element register banks
reguired in the ten-stage pipeline, for instance.

6. Non-Logic Propagation Delay

Figure 34 graphically illustrates the primary
performance differential between the synchronous and
asynchronous approaches. When taken as a percentage of the
throughput period (i1/throughput), the cost of the non-logic
propagation delay for the asynchronous implementation is
large. For ideal synchronous logic, the non-logic delay
includes only the propagation delay of the memory elements.
For asynchronous implementation, it includes both the latch
propagation delay and the time it takes to complete the
final two cycles of the four-cycle handshake. For this

reason, the propagation delay of the Muller-C element as it
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transitions through its states is the driving force in the

speed performance of the micropipeline approach.

Pct. Non-Loglc Delay

Pipeline Stages

Figure 34. Non-Logic Delay Comparison

B. CHAPTER SUMMARY

The theoretical advantages and disadvantages of

asynchronous logic techniques have been demonstrated in this
research. A well designed synchronous system  will
outperform a four-cycle handkshake micropipelined approach
when high throughput is the primary system performance
regquirement. If power consumption 1is the driving design
factor, asynchronous logic technigues are more efficient. In
order to provide increased overall system performance for
the asynchronous multiplier, the Muller-C element must be
redesigned to decrease propagation delays Dbetween state

transitions. In-depth analysis of relevant design trade-offs
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are the basis for professional system engineering. The
synchronous versus asynchronous comparison of this research

proved to be a fruitful trade-off analysis.
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VI. SUMMARY AND CONCLUSIONS

A. RESEARCH SUMMARY AND CONCLUSIONS

The background and relative virtues of synchronous and
asynchronous logic design have been thoroughly investigated
throughout this research. The synchronous approach is a
mature technique that continues to dominate the digital
design field. Asynchronous logic design displays merit when
the synchronous disadvantages of clock skew, worst-case
system performance, power consumption, modularity, and
technology migration are considered. However, circuit
complexity, size, and throughput performance hinder the
ability of asynchronous techniques to carve out a larger
portion of the digital design market.

Theoretical timing calculations and Tanner SPICE
simulations have been utilized to determine the proper
function and configuration of the féur—cycle micropipelined
asynchronous technique. Analysis and comparison of an 8x8-
bit multiplier developed utilizing this local timing method
versus one implemented with synchronous 1logic highlight
theoretical assumptions. As expected, the asynchronous
technigque consumes less power than an optimum synchronous
multiplier across five separate pipelined implementations.
However, the time lost completing all four cycles of the

micropipeline handshake 1limit the throughput rate of the
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asynchronous system. Therefore, the speed performance of the
synchronous implementation is superior. In the end, a design
engineer has been handed the tools required to make a
critical decision; what is more important, system speed

performance or power consumption?

B. AREAS FOR FUTURE STUDY

This research has concentrated on the schematic design
of a moderately complex integrated = circuit. Layout,
fabrication, and test of optimum synchronous and
asynchronous pipelined multipliers would further enhance the
knowledge base for technique comparisons.

As discussed in Chapter 1II, another locally timed
approach, the two-cycle micropipeline handshake, may save
some of the throughput period required by the four-cycle
method. As the name suggests, the two-cycle approach does
not require the last two elements of the handshake scheme
discussed in this thesis and therefore should display
improved speed characteristics. Two-rail asynchronous design
techniques are also available and have been investigated in
other areas. Schematic design of either of these two systems
is another future research opportunity with the two-cycle
handshake showing the most promise for system performance
improvement.

Finally, it may be possible to tighten up the four-

cycle handshake by utilizing the current-mode latch for both
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the memory elements and the Muller-C element. The decreased
propagation delay in the memory elements would not afford
too much performance improvement; however, a CML clocked
latch could be utilized vice a cross-coupled NOR SR latch to
improve the propagation delays inherent in the control

handshake.
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